(cos²20° + cos²70°/sin²20°+sin²70°)+sin²64°+cos64°sin26°
Answers
Answered by
3
Answer:
Step-by-step explanation:
(cos²20° + cos²70°/sin²20°+sin²70°)+sin²64°+cos64°sin26°
We know that,
Cos20° = Cos(90° -70°) = Sin70° (∵ Cos (90-θ) = Sinθ)
Sin20° = Sin ( 90° - 70°) = Cos70° (∵ Sin (90-θ) = Cosθ)
Sin26° = Sin (90° - 64°) = Cos64° (∵ Sin (90-θ) = Cosθ)
Substitute the values in above equation.
(cos²20° + cos²70°/sin²20°+sin²70°)+sin²64°+cos64°sin26°
= (Sin²70° + Cos²70°/Cos²70°+Sin²70°) + Sin²64° + Cos64° * Cos64°
= (1 / 1) + Sin²64° + Cos²64° (∵ Sin²θ + Cos²θ = 1)
= 1 + 1
= 2
Similar questions