cos²25cosec²25(tan²25-sin²25)
Answers
least the value of 25cosec^2x+36sec^2x25cosec
2
x+36sec
2
x is
Solution:
Let us have a look at a few formula:
\begin{gathered}1.\ cosec^2x = 1+ cot^2x\\2. \sec^2x = 1+ tan^2x\\3. \ tanx = \dfrac{1}{cotx}\end{gathered}
1. cosec
2
x=1+cot
2
x
2.sec
2
x=1+tan
2
x
3. tanx=
cotx
1
Let yy = 25cosec^2x+36sec^2x25cosec
2
x+36sec
2
x
Using 1 and 2 in y:
\begin{gathered}y=25(1+cot^2x)+36(1+tan^2x)\\\Rightarrow y=25+25cot^2x+36+36tan^2x\\\Rightarrow y=61+25cot^2x+36tan^2x\\\Rightarrow y=61+25cot^2x+36\frac{1}{cot^2x}\end{gathered}
y=25(1+cot
2
x)+36(1+tan
2
x)
⇒y=25+25cot
2
x+36+36tan
2
x
⇒y=61+25cot
2
x+36tan
2
x
⇒y=61+25cot
2
x+36
cot
2
x
1
For cotx terms, let us use the following formula:
Arithmetic mean \geq≥ Geometric mean
\begin{gathered}\dfrac{25cot^2x+36\frac{1}{cot^2x}}{2} \geq \sqrt{25cot^2x\times 36\frac{1}{cot^2x}}\\\Rightarrow \dfrac{25cot^2x+36\frac{1}{cot^2x}}{2} \geq \sqrt{25\times 36}\\\Rightarrow 25cot^2x+36\frac{1}{cot^2x} \geq 30 \times 2\\\Rightarrow 25cot^2x+36\frac{1}{cot^2x} \geq 60\end{gathered}
2
25cot
2
x+36
cot
2
x
1
≥
25cot
2
x×36
cot
2
x
1
⇒
2
25cot
2
x+36
cot
2
x
1
≥
25×36
⇒25cot
2
x+36
cot
2
x
1
≥30×2
⇒25cot
2
x+36
cot
2
x
1
≥60
Putting the above value in yy :
So y_{min} = 61+60 = \bold{121}y
min
=61+60=121
Therefore, the minimum value of yy = 25cosec^2x+36sec^2x25cosec
2
x+36sec
2
x is 121