cos2A\1-sin2A = 1 + tanA\1 - tanA
Answers
To prove --->
Cos2A / 1 - Sin2A = 1+ tanA / 1 - tanA
Proof--->
We have some formulee
Cos 2A = Cos²A - Sin²A
Sin²A + Cos²A = 1
Sin2A = 2 SinA CosA
Now we find value of Cos2A
Cos2A = Cos²A - Sin²A
= (CosA )² - ( SinA )²
We have an identity
a² - b² = ( a + b ) ( a - b )
Applying this here
Cos2A = ( CosA + SinA ) ( CosA - SinA )
Now we simplify denominator
1 - Sin2A = Sin²A + Cos²A - 2 SinA CosA
= ( CosA - SinA )²
LHS
Cos2A
=--------------------------
1 - Sin 2A
(CosA + SinA ) ( CosA - SinA )
= ------------------------------------------------
( CosA - SinA )²
( CosA - SinA ) cancel out from numerator and denominator
( CosA + SinA )
= ----------------------------
( CosA - SinA )
Dividing by CosA in numerator and denominator
CosA /CosA + SinA / CosA
= ----------------------------------------------
CosA / CosA - SinA / CosA
using SinA / CosA = tanA and
CosA / CosA = 1
1 + tanA
= ----------------- = RHS
1 - tanA
Here, use formula
• cos2a= (1-tan^2a)/(1+tan^2a)
and
• sin2a = 2tana/ 1+tan^2a
Put these two in LHS , we get
Here , 1+tan^2 a gets cancel,
and In denominator (1+tan^2a-2tana) = ( 1- tana ) ^2
and in numerator we write 1-tan^2a = ( 1+tana) ( 1-tana)
Here , ( 1- tana ) in both num and deno gets cancel , we get
LHS = RHS