Math, asked by vickygupta8171, 1 day ago

Cos²A + Cos²B - Cos²C = 1-2 sinA×sinB×cosc

Answers

Answered by mathdude500
5

Question:-

In triangle ABC, prove that cos²A + cos²B - cos²C = 1-2 sinA sinB cosC

\large\underline{\sf{Solution-}}

Given, A triangle ABC

\rm\implies \:A + B + C = \pi

Consider LHS

\rm \:  {cos}^{2}A +  {cos}^{2}B -  {cos}^{2}C \\

can be rewritten as

\rm \:  {cos}^{2}A +  (1 - {sin}^{2}B) -  {cos}^{2}C \\

can be further rearrange as

\rm \: =  \:   1 + ({cos}^{2}A - {sin}^{2}B)-  {cos}^{2}C \\

We know,

\boxed{\tt{  \: cos(x + y)cos(x - y) =  {cos}^{2}x -  {sin}^{2}y \: }} \\

So, using this result, we get

\rm \:  =  \: 1 + cos(A + B)cos(A - B) -  {cos}^{2}C

\rm \:  =  \: 1 + cos(\pi - C)cos(A - B) -  {cos}^{2}C

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \:  \rm \:  \because \: A + B + C = \pi \:  \} \\

\rm \:  =  \: 1  -  cos C \: cos(A - B) -  {cos}^{2}C

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \:  \rm \:  \because \:cos(\pi -  x)=  - cosx\:  \} \\

\rm \:  =  \: 1  -  cos C \:[cos(A - B) +  {cos}C]

\rm \:  =  \: 1  -  cos C \:[cos(A - B) +  {cos}(\pi - (A + B))]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \:  \rm \:  \because \: A + B + C = \pi \:  \} \\

\rm \:  =  \: 1  -  cos C \:[cos(A - B) -   {cos}((A + B)]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \:  \rm \:  \because \:cos(\pi -  x)=  - cosx\:  \} \\

We know,

\boxed{\tt{ cos(x - y) - cos(x + y) = 2sinx \: siny \: }} \\

So, using this result, we get

\rm \:  =  \: 1 - cosC \: (2sinA \: sinB)

\rm \:  =  \: 1 - 2sinA \: sinB \: cosC \\

Hence,

\boxed{\tt{ \rm \: {cos}^{2}A +  {cos}^{2}B -  {cos}^{2}C=\: 1 - 2sinA \: sinB \: cosC}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\rm \:  \:  {sin}^{2}x -  {sin}^{2}y = sin(x + y) \: sin(x - y) \:  \\

\rm \:  \: 2sinA \: cosB = sin(A + B) + sin(A - B) \:  \\

\rm \:  \: 2cosA \: cosB = cos(A + B) + cos(A - B) \:  \\

\rm \:  \: 2sinA \: sinB = cos(A  -  B)  -  cos(A  +  B) \:  \\

\rm \: \: sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \\

\rm \: \: sinx  -  siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \\

\rm \: \: cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \\

\rm \: \: cosx -  cosy = -  \:  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \\

Similar questions