Math, asked by Abhigyan6746, 11 months ago

cos²x dy/dx + y = tan x ,Solve it.

Answers

Answered by MaheswariS
6

Answer:

The solution is

\bf\:y.e^{tanx}=tanx\:e^{tanx}-e^{tanx}+c

Step-by-step explanation:

Cos²x dy/dx + y = tan x ,Solve it.

cos^2x\:\frac{dy}{dx}+y=tanx

\text{Divide both sides by }cos^2x

\frac{dy}{dx}+sec^2x\:y=sec^2x\:tanx

This is a linear differential equation in y

comparing with

\frac{dy}{dx}+Py=Q we get

P=sec^2x\:and\:Q=sec^2x\:tanx

Integrating factor

=e^{\int\:P\:dx}

=e^{\int\:sec^2x\:dx}

=e^{tanx}

The solution is

y.e^{\int\:P\:dx}=\int\:Q\:e^{\int\:P\:dx}\:dx+c

y.e^{tanx}=\int\:sec^2x\:tanx\:e^{tanx}\:dx+c ......(1)

Take

t=tanx

\frac{dt}{dx}=sec^2x

dt=sec^2x\:dx

(1) becomes

y.e^{tanx}=\int\:\:t\:e^{t}\:dt+c

using integration by parts we get

y.e^{tanx}=t\:e^t-e^t+c

The solution is

\boxed{\bf\:y.e^{tanx}=tanx\:e^{tanx}-e^{tanx}+c}

Answered by ranikumari4878
3

Answer:

The result is:

y\cdot e^{tanx}=tanx\cdot e^{tanx}-e^{tanx}+c

Step-by-step explanation:

Given equation is:

cos^2x\dfrac{dy}{dx}+y=tanx

Hence dividing both side of the equation by cos^2x we get:

\dfrac{dy}{dx}+\dfrac{y}{cos^2x}=\dfrac{tanx}{cos^2x}\\

Since we know the formula:

\dfrac{1}{cosx}=secx

So:

\dfrac{dy}{dx}+sec^2x\,(y)=sec^2x\,tanx\,\,\,\,\,eqn(1)

This is in the form of first order linear differential equation because of \dfrac{dy}{dx}.

Hence the general solution of this equation is:

\dfrac{dy}{dx}+P(x)y=Q(x)\,\,\,\,\,eqn(2)

Comparing with eqn(2) with eqn(1) we get:

P(x)=sec^2x\\Q(x)=sec^2x\,tanx

Now evaluating it for integrating factor:

I.F=e^{\int P(x)\,dx}

=e^{\int sec^2x\,dx}\\=e^{tanx}

Hence the solution will be:

y\times I.F=\displaystyle\int Q(x)\times I.F\,dx\\y\times e^{tanx}=\displaystyle\int sec^2x\,tanx\times e^{tanx}\,dx\\

Let:

sec^2x\,dx=dz

Now integrating:

\displaystyle\int z\cdot e^z\,dz\\

Applying here integration by parts formula and it is describe below:

\displaystyle\int (uv)dx=u\displaystyle\int v\,dx-\displaystyle\int [\dfrac{d}{dx}(u)\displaystyle\int v\,dx]dx

Therefore:

z\displaystyle\int e^z\,dz-\displaystyle\int [\dfrac{d}{dz}(z)\displaystyle\int e^z\,dz]dz\\=ze^z-\displaystyle\int [1\cdot e^z]dz\\=ze^z-e^z+c\\

Substituting back the value of z.

y\cdot e^{tanx}=tanx\,e^{tanx}-e^{tanx}+c

Here c denotes the integration constant.

Similar questions