Cos36×cos72×cos108×cos144=1÷16
Answers
Answered by
82
Value of cos36 = [(√3+1)/2√2]
Value of sin18 = [(√3-1)/2√2]
Now,
=cos36×cos72×cos108×cos144
=cos36×sin(90-18)×cos(90+18)×cos(180-36)
=cos36×sin18×(-sin18)×(-cos36)
=cos36sin18sin18cos36
=[(√3+1)/2√2][(√3-1)/2√2}[(√3-1)/2√2][(√3+1)/2√2]
=2/8×2/8
=1/16
Value of sin18 = [(√3-1)/2√2]
Now,
=cos36×cos72×cos108×cos144
=cos36×sin(90-18)×cos(90+18)×cos(180-36)
=cos36×sin18×(-sin18)×(-cos36)
=cos36sin18sin18cos36
=[(√3+1)/2√2][(√3-1)/2√2}[(√3-1)/2√2][(√3+1)/2√2]
=2/8×2/8
=1/16
Similar questions
English,
8 months ago
Math,
8 months ago
Math,
8 months ago
Math,
1 year ago
India Languages,
1 year ago