cos36cos72cos108cos144 =1/16
Answers
Answered by
13
LHS = cos36°.cos72°.cos108°.cos144°
= cos36°.cos72°.cos(180°-72°).cos(180°-36°)
= cos36°.cos72°.(-cos72°).(-cos36°)
= (cos36°.cos72°)²
we know,
=
= {1/16(5 - 1)}²
= {1/4}² = 1/16 = RHS
= cos36°.cos72°.cos(180°-72°).cos(180°-36°)
= cos36°.cos72°.(-cos72°).(-cos36°)
= (cos36°.cos72°)²
we know,
=
= {1/16(5 - 1)}²
= {1/4}² = 1/16 = RHS
Answered by
6
HELLO DEAR,
GIVEN:-
cos36 * cos72 * cos108 * cos144 = 1/16
solving L.H.S,
cos36 * cos72 * cos108 * cos144 = k(say)
multiply both side by "2sin36",
2ksin36 = (2sin36 * cos36) * cos72 * cos108 * cos144
2ksin36 = sin72 * cos 72 * cos108 * cos144
2ksin36 = 1/2{2(sin72 * cos72) * cos108 * cos144}
2ksin36 = 1/4{(2sin144 * cos144) * cos108}
2ksin36 = 1/4{sin288 * cos108}
2ksin36 = 1/8{2sin(180 + 108) * cos108}
2ksin36 = 1/8{-2sin108 * cos 108}
[as , sin(180 + ) = -sin]
2ksin36 = 1/8{-sin216}
2ksin36 = -1/8{sin(180 + 36)}
2ksin36 = -1/8{-sin36}
2ksin36 = 1/8(sin36)
k = 1/16
HENCE, cos36cos72cos108cos144 = 1/16
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions