Math, asked by priyadharshini96, 1 year ago

cos36cos72cos108cos144 =1/16

Answers

Answered by abhi178
13
LHS = cos36°.cos72°.cos108°.cos144°

= cos36°.cos72°.cos(180°-72°).cos(180°-36°)

= cos36°.cos72°.(-cos72°).(-cos36°)

= (cos36°.cos72°)²

we know,
cos36=\frac{1}{4}(\sqrt{5}+1)
cos72=\frac{1}{4}(\sqrt{5}-1)

= \{\frac{1}{4}(\sqrt{5}+1).\frac{1}{4}(\sqrt{5}-1)\}^2

= {1/16(5 - 1)}²

= {1/4}² = 1/16 = RHS
Answered by rohitkumargupta
6

HELLO DEAR,



GIVEN:-


cos36 * cos72 * cos108 * cos144 = 1/16



solving L.H.S,



cos36 * cos72 * cos108 * cos144 = k(say)



multiply both side by "2sin36",



2ksin36 = (2sin36 * cos36) * cos72 * cos108 * cos144



2ksin36 = sin72 * cos 72 * cos108 * cos144



2ksin36 = 1/2{2(sin72 * cos72) * cos108 * cos144}



2ksin36 = 1/4{(2sin144 * cos144) * cos108}



2ksin36 = 1/4{sin288 * cos108}



2ksin36 = 1/8{2sin(180 + 108) * cos108}



2ksin36 = 1/8{-2sin108 * cos 108}



[as , sin(180 + \Theta) = -sin\Theta]



2ksin36 = 1/8{-sin216}



2ksin36 = -1/8{sin(180 + 36)}



2ksin36 = -1/8{-sin36}



2ksin36 = 1/8(sin36)



k = 1/16



HENCE, cos36cos72cos108cos144 = 1/16




I HOPE ITS HELP YOU DEAR,


THANKS

Similar questions