Math, asked by aljaypintoy7550, 1 year ago

cos3A ×cos2A +sin4A×sin A= cos A ×cos 2A prove it

Answers

Answered by MaheswariS
37

Answer:

cos3A.cos2A+sin4A.sinA=cosA.cos2A

Step-by-step explanation:

Formula used:

cos(A+B)+cos(A-B)=2\:cosA\:cosB

cos(A-B)+cos(A+B)=2\:sinA\:sinB

cosC+cosD=2\:cos(\frac{C+D}{2})\:cos(\frac{C-D}{2})

Now,

cos3A.cos2A+sin4A.sinA

=\frac{1}{2}[2\:cos3A.cos2A+2\:sin4A.sinA]

=\frac{1}{2}[cos(3A+2A)+cos(3A-2A)+cos(4A-A)-cos(4A+A)]

=\frac{1}{2}[cos5A+cosA+cos3A-cos5A]

=\frac{1}{2}[cosA+cos3A]

=\frac{1}{2}[2\:cos(\frac{A+3A}{2}).cos(\frac{A-3A}{2})]

=cos2A.cos(-A)

=cos2A.cosA

Answered by asviyash84
2

May its helps you....

3 formulas has been used in this question..

Firstly take LHS..

then put the formulas and you find...

LHS =RHS

Thank you

Attachments:
Similar questions