Math, asked by Jumainaaaah, 1 year ago

cos3A+sin3A/cosA+cos3A-sin3A/cosA-sinA=2

Attachments:

MySecrets: hiii
MySecrets: i tried in my copy but the answer has not come.
Jumainaaaah: heyyy
Jumainaaaah: thanks anyway
MySecrets: ur welcome frnd

Answers

Answered by mysticd
16

Answer:

 \red{\frac{cos^{3}A+sin^{3}A}{cosA+sinA}+\frac{cos^{3}A-sin^{3}A}{cosA-sinA}}\green{=2}

Step-by-step explanation:

 LHS = \frac{cos^{3}A+sin^{3}A}{cosA+sinA}+\frac{cos^{3}A-sin^{3}A}{cosA-sinA}

 =\frac{(cosA+sinA)(cos^{2}A-cosAsinA+sin^{2}A}{(cosA+sinA)}+\frac{(cosA-sinA)(cos^{2}A+cosAsinA+sin^{2}A}{(cosA-sinA)}

=cos^{2}A-cosAsinA+sin^{2}A+cos^{2}A+cosAsinA+sin^{2}A

 = 2(cos^{2}A+sin^{2}A)

= 2\times 1

\boxed {\pink {cos^{2}A+sin^{2}A=1}}

= RHS

Therefore.,

 \red{\frac{cos^{3}A+sin^{3}A}{cosA+sinA}+\frac{cos^{3}A-sin^{3}A}{cosA-sinA}}\green{=2}

•••♪

Similar questions