Cos3x-sin3x=(cosx+sinx)(1+2sin2x)
Answers
Answer:
cos3x - sin3x = ( cosx + sinx ) × ( 1 + 2sin2x)
4cosx³ - 3cosx - ( - 4sinx³ + 3sinx ) = ( cosx + sinx ) × ( 1 + 2 × 2sinxcosx)
4cosx³ - 3cosx + 4sinx³ - 3sinx = ( cosx + sinx ) × ( 1 + 4sinxcosx)
4cosx³ - 3cosx + 4sinx³ - 3sinx = cosx + 4cosx² sinx + sinx + 4sinx²cosx
4cosx³ - 3cosx + 4sinx³ - 3sinx - cosx - 4cosx² sinx - sinx - 4sinx²cosx = 0
4cosx³ - 4cosx + 4sinx³ - 4sinx - 4cosx² sinx - 4sinx²cosx = 0
- 4cosx × ( - cosx² + 1 ) + 4sinx³ - 4sinx - 4cosx² sinx - 4sinx²cosx = 0
- 4cosxsinx² + 4sinx³ - 4sinx - 4cosx² sinx - 4sinx²cosx = 0
4sinx × ( 2sinxcosx + sinx² - 1 - cosx² ) = 0
4sinx × ( - sin2x + sinx² - 1 - cosx² ) = 0
4sinx × ( - sin2x - ( 1 - sinx² ) - cosx² ) = 0
4sinx × ( - sin2x - cosx² - cosx² ) = 0
4sinx × ( - sin2x - 2cosx² ) = 0
- 4sinxsin2x - 8sinxcosx² = 0
- 4sinx × sin2x + 2cosx² = 0
sinx × sin2x + 2cosx² = 0
sinx = 0
sin2x + 2cosx² = 0
x = k π
x = π / 2 + k π
x = 3π / 4 + k π
x = kπ / 2
x = 3π / 4
Here is Your Solution.
Mark Brainliest
@manishthakur100
Answer:
see the attachment buddy