cos4 θ + sin4 θ – 2 sin2 θ cos2 θ = (2 cos2 θ – 1)2
aum1052:
how to do that
Answers
Answered by
7
Answer:
Hey Mate.!
Step-by-step explanation:
L.H.S. = sin4 θ – cos4 θ
= (sin2 θ)2 – (cos2 θ)2
= (sin2 θ – cos2 θ)(sin2 θ + cos2 θ)
= (sin2 θ – cos2 θ) × 1
= sin2 θ – cos2 θ = R.H.S.
= sin2 θ – (1 – sin2 θ)
= sin2 θ – 1 + sin2 θ
= 2 sin2 θ – 1 = R.H.S.
= 2(1 – cos2 θ) – 1
= 2 – 2 cos2 θ – 1
= 1 – 2 cos2 θ = R.H.S.
Answered by
2
L.H.S. = sin4 θ – cos4 θ
= (sin2 θ)2 – (cos2 θ)2
= (sin2 θ – cos2 θ)(sin2 θ + cos2 θ)
= (sin2 θ – cos2 θ) × 1
= sin2 θ – cos2 θ = R.H.S.
= sin2 θ – (1 – sin2 θ)
= sin2 θ – 1 + sin2 θ
= 2 sin2 θ – 1 = R.H.S.
= 2(1 – cos2 θ) – 1
= 2 – 2 cos2 θ – 1
= 1 – 2 cos2 θ = R.H.S.
Mark ❤️
Similar questions