cos40+cos50+cos70+cos80=cos20+cos 10
Answers
Answered by
48
Given, cos 40 + cos 50 + cos 70 + cos 80
We know that cos a + cos b= 2 cos(a+b)/2 cos(a-b)/2.
(2 cos(40+80)/2 cos(40-80)/2) + (2 cos (50+70)/2 cos(50-70)/2)
= 2 cos 60 cos (-20) + 2 cos 60 cos (-10)
= 2 * 1/2 * cos 20 + 2 * 1/2 cos 10
= cos 20 + cos 10.
We know that cos a + cos b= 2 cos(a+b)/2 cos(a-b)/2.
(2 cos(40+80)/2 cos(40-80)/2) + (2 cos (50+70)/2 cos(50-70)/2)
= 2 cos 60 cos (-20) + 2 cos 60 cos (-10)
= 2 * 1/2 * cos 20 + 2 * 1/2 cos 10
= cos 20 + cos 10.
Zantastic:
tysm
Answered by
16
hello users .......
we have to show that :-
Cos40+cos50+cos70+cos80 = cos20+cos 10
solution :-
We know that: cos c + cos d= 2 cos(c+d)/2 cos(a-d)/2.
here,
(cos 40 + cos 50) + (cos 70 + cos 80) =
{2 cos(40+80)/2 cos(40-80)/2} + {2 cos (50+70)/2 cos(50-70)/2}
= 2 cos 120 / 2 cos (-40/2) + 2 cos 120/2 cos (-20 / 2)
=2 cos 60 cos (-20) + 2 cos 60 cos (-10)
= 2 * 1/2 * cos 20 + 2 * 1/2 cos 10
= cos 20 + cos 10.
hence LHS = RHS
we have to show that :-
Cos40+cos50+cos70+cos80 = cos20+cos 10
solution :-
We know that: cos c + cos d= 2 cos(c+d)/2 cos(a-d)/2.
here,
(cos 40 + cos 50) + (cos 70 + cos 80) =
{2 cos(40+80)/2 cos(40-80)/2} + {2 cos (50+70)/2 cos(50-70)/2}
= 2 cos 120 / 2 cos (-40/2) + 2 cos 120/2 cos (-20 / 2)
=2 cos 60 cos (-20) + 2 cos 60 cos (-10)
= 2 * 1/2 * cos 20 + 2 * 1/2 cos 10
= cos 20 + cos 10.
hence LHS = RHS
Similar questions