Math, asked by sahilcool7700, 1 month ago

Cos43=m2-1/m2+1,then sin43+cos47=

Answers

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

To  \: find  =  \\ value \: of \: sin \: 43 + cos \: 47 \: (in \: terms \: of \: m) \\  \\ so \: here \: cos \: 43 =  \frac{m {}^{2} - 1 }{m {}^{2} + 1 }  \\  \\ so \: we \: know \: that \:  \\ sin {}^{2} θ + cos { }^{2} θ = 1 \\ where \: θ = 43 \\  \\ hence \: accordingly \\ sin {}^{2}  \: 43 = 1 - cos {}^{2} .43 \\  = 1 - ( \frac{m {}^{2}  - 1}{m {}^{2}  + 1} ) {}^{2}  \\  \\  = 1 -  \frac{m {}^{4} + 1 - 2m {}^{2}  }{m {}^{4} + 1 + 2m {}^{2}  }  \\  \\  =  \frac{m {}^{4}  + 1 + 2m {}^{2}  - (m {}^{4}  + 1 - 2m {}^{2} )}{m {}^{4} + 1 + 2m {}^{2}  }  \\  \\  =  \frac{m {}^{4}  + 1 + 2m {}^{2}  - m {}^{4}  - 1 + 2m {}^{2} }{m {}^{4}  + 1 + 2m {}^{2} }  \\  \\  =  \frac{2m {}^{2}  + 2m {}^{2} }{(m {}^{2} + 1) {}^{2}  }  \\  \\  =  \frac{4m {}^{2} }{(m {}^{2}  + 1) {}^{2} }  \\  \\  =  \frac{(2m) {}^{2} }{(m {}^{2}  + 1) {}^{2} }  \\  \\  = ( \frac{2m}{m {}^{2}  + 1} ) {}^{2}  \\  \\ taking \: square \: roots \: on \: both \: sides \\ we \: get  \\ \\ sin \: 43 =  \frac{2m}{m {}^{2} + 1 }

now \: similarly \\ we \: know \: that \\ according \: to \: complementary \: angle \: relation \\ sin \: (90 - θ) = cos \: θ \\ so \: hence \:  \\ sin \: 43 = cos \: (90 - 43) \\  = cos \: 47 \\  \\ hence \: cos \: 47 =  \frac{2m}{m {}^{2} + 1 }

so \: hence \\ sin \: 43 + cos \: 47 \\  =  \frac{2m}{m {}^{2}  + 1}  \:  +  \:  \frac{2m}{m {}^{2}  + 1}  \\  \\  =  \frac{2m + 2m}{m {}^{2}  + 1}  \\  \\  =  \frac{4m}{m {}^{2}  + 1}

Similar questions