Math, asked by Inaayat, 1 year ago

cos45°÷sec30°+cosec30​

Answers

Answered by Anonymous
20

 \sf given :  -  \frac{ \cos(45) }{ \sec(30) } +  \csc(30)

now lemme tell you the values of these ratios :

  • cos45° = √2/2

  • sec30° = 2/√3

  • csc30° = 2

 \sf  \therefore value \: of \:  \frac{ \cos(45) }{ \sec(30) }  +  \csc(30)  \\  \\  \sf =   \large{\frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3}}  } } + 2 \\  \\  \sf =  \left(  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2} \right) + 2 \\  \\  \sf =  \frac{ \sqrt{3} }{2 \sqrt{2} }  + 2 \\  \\  \sf =  \frac{ \sqrt{3} + 4 \sqrt{2}  }{2 \sqrt{2} }  \\  \\  \sf rationalising \\  \\  \sf =  \frac{ \sqrt{3}  + 4 \sqrt{2} }{2 \sqrt{2} }  \times  \frac{2 \sqrt{2} }{2 \sqrt{2} }  \\  \\  \sf =  \frac{2 \sqrt{2} ( \sqrt{3}  + 4 \sqrt{2} )}{2 \sqrt{2}  \times 2 \sqrt{2} }  \\  \\  \sf =  \frac{2 \sqrt{6} + 16 }{8}  \\  \\  \sf =  \frac{2( \sqrt{6}  + 8)}{8}  \\  \\  \sf =  \frac{ \sqrt{6}  + 8}{4}

if your question is  \sf  \frac{ \cos(45) }{ \sec(30)  +  \csc(30) }

then you can refer to the attachment

Attachments:
Similar questions