(cos4A-sin4A) is equal to what
Answers
Answered by
55
Just posted sin 4a...but
cos 4a = cos 2(2a) =
cos^2 2a - sin^2 2a =
(cos^2 a - sin^2 a)^2 - (2 sin a cos a)^2 =
cos^4 a - 2 sin^2 a cos^2 a + sin^4 a - 4 sin^2 a cos^2 a =
cos^4 a + sin^4 a - 6 sin^2 a cos^2 a
Further manipulation is possible.
cos 4a = cos 2(2a) =
cos^2 2a - sin^2 2a =
(cos^2 a - sin^2 a)^2 - (2 sin a cos a)^2 =
cos^4 a - 2 sin^2 a cos^2 a + sin^4 a - 4 sin^2 a cos^2 a =
cos^4 a + sin^4 a - 6 sin^2 a cos^2 a
Further manipulation is possible.
Answered by
234
Hi !
cos⁴A = (cos²A)²
sin⁴A = (sin²A)²
cos⁴A - sin⁴A = (cos²A)² - (sin²A)²
= ( cos²A + sin²A) (cos²A - sin²A)
= (1)* (cos²A - (1 - cos²A)
= cos²A - 1 + cos²A
= 2 cos²A - 1
cos⁴A = (cos²A)²
sin⁴A = (sin²A)²
cos⁴A - sin⁴A = (cos²A)² - (sin²A)²
= ( cos²A + sin²A) (cos²A - sin²A)
= (1)* (cos²A - (1 - cos²A)
= cos²A - 1 + cos²A
= 2 cos²A - 1
Similar questions