Math, asked by seenvasreddy, 1 year ago

prove that


cotA-cos A /cot A +cos A =  cosec A-1/cosec A +1


this is the question in the image explain the (1)marked step

Attachments:

Answers

Answered by ashishks1912
17

GIVEN :

The trignometric equation is \frac{cotA-cosA}{cotA-cosA}=\frac{cosecA-1}{cosecA+1}

TO PROVE :

The given equality  \frac{cotA-cosA}{cotA-cosA}=\frac{cosecA-1}{cosecA+1} is true.

SOLUTION :

Given that  \frac{cotA-cosA}{cotA+cosA}=\frac{cosecA-1}{cosecA+1}

Now we have to prove that LHS=RHS

Now taking the LHS

\frac{cotA-cosA}{cotA+cosA}

Multiply and divide the above expression by denominator's conjugate cotA-cosA

=\frac{cotA-cosA}{cotA+cosA}\times \frac{cotA-cosA}{cotA-cosA}

=\frac{(cotA-cosA)^2}{(cotA+cosA)(cotA-cosA)}

By using the algebraic identities :

(a-b)^2=a^2-2ab+b^2 and

(a+b)(a-b)=a^2-b^2

=\frac{cot^2A-2cotAcosA+cos^2A}{cot^2A-cos^2A}

By using the trignometric property :

cotx=\frac{cosx}{sinx}

=\frac{\frac{cos^2A}{sin^2A}-2(\frac{cosA}{sinA}).cosA+cos^2A}{\frac{cos^2A}{sin^2A}-cos^2A}

=\frac{\frac{cos^2A}{sin^2A}-2(\frac{cos^2A}{sinA})+cos^2A}{\frac{cos^2A}{sin^2A}-cos^2A}

=\frac{\frac{cos^2A-2cos^2A sinA+cos^2A sin^2A}{sin^2A}}{\frac{cos^2A-cos^2A sin^2A}{sin^2A}}

=\frac{cos^2A-2cos^2A sinA+cos^2A sin^2A}{cos^2A-cos^2A sin^2A}

=\frac{cos^2A(1-2sinA+sin^2A}{cos^2A(1-sin^2A)}

=\frac{1-2sinA+sin^2A}{1-sin^2A}

=\frac{1^2-2(1)sinA+sin^2A}{1-sin^2A}

By using the algebraic identity :

(a-b)^2=a^2-2ab+b^2

=\frac{(1-sin^2A)^2}{1^2-sin^2A}

By using the algebraic identity :

(a-b)(a+b)=a^2-b^2

=\frac{(1-sinA)^2}{(1-sinA)(1+sinA)}

=\frac{1-sinA}{1+sinA}

By using the trignometric property :

sinx=\frac{1}{cosecx}

=\frac{1-\frac{1}{cosecA}}{1+\frac{1}{cosecA}}

=\frac{\frac{cosecA-1}{cosecA}}{\frac{cosecA+1}{cosecA}}

\frac{cosecA-1}{cosecA+1}=RHS

∴ LHS=RHS

∴  \frac{cotA-cosA}{cotA+cosA}=\frac{cosecA-1}{cosecA+1}

Hence proved.

Answered by Harmanchahal84
25

Answer:

Hope this help you ......

Thanku you .....

Attachments:
Similar questions