Math, asked by Aniket7275, 1 year ago

Cos4x +cos3x +cos2x/sin4x +sin3x +sin2x = cot3x


Answers

Answered by namish5770
10

Answer:

Your answer is in attachment.

Please mark as a Brainliest...

Attachments:
Answered by vaishu775
1

\begin{gathered}\mapsto \bf{Prove\: that\: :\: \dfrac{cos4x + cos3x + cos2x}{sin4x + sin3x + sin2x} =\: cos3x}\\\end{gathered}

❒ Solution :-

\bigstar\: \: \purple{\bold{L.H.S =\: \dfrac{cos4x + cos3x + cos2x}{sin4x + sin3x + sin2x}}}

\implies \sf \dfrac{(cos4x + cos2x) + cos3x}{(sin4x + sin2x) + sin3x}

❒ As we know that :

\begin{gathered}\clubsuit\: \: \sf\bold{\pink{cos A + cos B =\: 2cos\bigg\lgroup \dfrac{A + B}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{A - B}{2}\bigg\rgroup}}\\\end{gathered}

\begin{gathered}\clubsuit\: \: \: \sf\bold{\pink{sin A + sin B =\: 2sin\bigg\lgroup \dfrac{A + B}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{A - B}{2}\bigg\rgroup}}\\\end{gathered}

❒ Then, we can write as :

\begin{gathered}\implies \sf \dfrac{2cos\bigg\lgroup \dfrac{4x + 2x}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{4x - 2x}{2}\bigg\rgroup + cos3x}{2sin\bigg\lgroup \dfrac{4x + 2x}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{4x - 2x}{2}\bigg\rgroup + sin3x}\\\end{gathered}

\implies \sf \dfrac{2\: cos\: 3x\: cos x\: + cos3x}{2\: sin\: 3x\: cos\: x\: + sin 3x}

\implies \sf \dfrac{cos\: 3x\cancel{(2\: cos\: x + 1)}}{sin\: 3x\cancel{(2\: cos\: x + 1)}}

\implies \sf \dfrac{cos\: 3x}{sin\: 3x}

❒ As we know that :

\clubsuit \: \: \sf\bold{\pink{cot A =\: \dfrac{cos A}{Sin A}}}

\implies \sf\bold{\red{cot 3x}}

\begin{gathered}\\\end{gathered}

❒ Again,

\bigstar\: \: \sf\purple{\bold{R.H.S =\: cot\: 3x}}

\implies \sf\bold{\red{cot\: 3x}}

❒ Hence,

\leadsto \sf\bold{L.H.S =\: R.H.S}

\large\purple{\underline{{\boxed{\textbf{Hence\: Proved.}}}}}

Similar questions