Math, asked by Cleparmaths, 9 days ago

Cos55+cos65+cos175=0

Answers

Answered by mathdude500
7

Question :-

Prove that

\rm \: cos55\degree  + cos65\degree  + cos175\degree  = 0 \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: cos55\degree  + cos65\degree  + cos175\degree \\

can be re-arranged as

\rm \: =  \:  cos65\degree  + cos55\degree  + cos175\degree \\

We know,

\boxed{\sf{  \:\rm \: cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \:  \: }} \\

So, on this result, we get

\rm \: =  \:2cos\bigg[\dfrac{65\degree  + 55\degree }{2} \bigg]cos\bigg[\dfrac{65\degree  - 55\degree }{2} \bigg] + cos175\degree

\rm \: =  \:2cos\bigg[\dfrac{120\degree }{2} \bigg]cos\bigg[\dfrac{10\degree }{2} \bigg] + cos175\degree  \\

\rm \: =  \:2cos60\degree cos5\degree  + cos175\degree  \\

\rm \: =  \:2 \times  \frac{1}{2}  \times  cos5\degree  + cos175\degree  \\

\rm \: =  \:cos5\degree  + cos175\degree  \\

can be further rewritten as

\rm \: =  \:cos5\degree  + cos(180\degree  - 5\degree ) \\

We know,

\boxed{\sf{  \:\rm \: cos(180\degree  - x)  \: =  -  \: cosx \:  \: }} \\

So, using this result, we get

\rm \: =  \:cos5\degree  - cos5\degree  \\

\rm \: =  \:0 \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: cos55\degree  + cos65\degree  + cos175\degree  = 0 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \: sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \:  \: }} \\

\boxed{\sf{  \:\rm \: sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \:  \: }} \\

\boxed{\sf{  \:\rm \: cosx - cosy = 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{y - x}{2} \bigg] \:  \: }} \\

\boxed{\sf{  \:\rm \: 2sinxcosy = sin(x + y) + sin(x - y) \: \:  }} \\

\boxed{\sf{  \:\rm \: 2cosxcosy = cos(x + y) + cos(x - y) \: \:  }} \\

\boxed{\sf{  \:\rm \: 2sinxsiny = cos(x  -  y) + cos(x  +  y) \: \:  }} \\

Answered by Eline75
78

Answer:

</p><p></p><p>\begin{gathered}\rm \: cos55\degree + cos65\degree + cos175\degree = 0 \\ \end{gathered}cos55°+cos65°+cos175°=0</p><p></p><p>

\large\underline{\sf{Solution-}}</p><p></p><p>

 \rm \: Consider LHS</p><p></p><p>

\begin{gathered}\rm \: cos55\degree + cos65\degree + cos175\degree \\ \end{gathered}cos55°+cos65°+cos175° \\ </p><p></p><p>

 \rm \: can \:  be \:  re-arranged \:  as</p><p></p><p>

\begin{gathered}\rm \: = \: cos65\degree + cos55\degree + cos175\degree \\ \end{gathered} \tt \: =cos65°+cos55°+cos175°</p><p></p><p>

 \rm \: We \:  know,</p><p></p><p>\begin{gathered}\boxed{\sf{  \:\rm \: cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: \: }} \\ \end{gathered} cosx+cosy=2cos[2x+y]cos[2x−y]</p><p></p><p>

   \rm \: So, on \:  this  \: result,  \: we \:  get</p><p></p><p>\rm \: = \:2cos\bigg[\dfrac{65\degree + 55\degree }{2} \bigg]cos\bigg[\dfrac{65\degree - 55\degree }{2} \bigg] + cos175\degree=2cos[265°+55°]cos[265°−55°]+cos175°</p><p></p><p>\begin{gathered}\rm \: = \:2cos\bigg[\dfrac{120\degree }{2} \bigg]cos\bigg[\dfrac{10\degree }{2} \bigg] + cos175\degree \\ \end{gathered}=2cos[2120°]cos[210°]+cos175°</p><p></p><p>\begin{gathered}\rm \: = \:2cos60\degree cos5\degree + cos175\degree \\ \end{gathered}=2cos60°cos5°+cos175°</p><p></p><p>\begin{gathered}\rm \: = \:2 \times \frac{1}{2} \times cos5\degree + cos175\degree \\ \end{gathered}=2×21×cos5°+cos175°</p><p></p><p>\begin{gathered}\rm \: = \:cos5\degree + cos175\degree \\ \end{gathered}=cos5°+cos175°</p><p></p><p>can  \: be \:  further \:  rewritten \:  as</p><p></p><p>\begin{gathered}\rm \: = \:cos5\degree + cos(180\degree - 5\degree ) \\ \end{gathered}=cos5°+cos(180°−5°)</p><p></p><p>We know,</p><p></p><p>\begin{gathered}\boxed{\sf{  \:\rm \: cos(180\degree - x) \: = - \: cosx \: \: }} \\ \end{gathered} cos(180°−x)=−cosx</p><p></p><p>So, using this result, we get</p><p></p><p>\begin{gathered}\rm \: = \:cos5\degree - cos5\degree \\ \end{gathered}=cos5°−cos5°</p><p></p><p>\begin{gathered}\rm \: = \:0 \\ \end{gathered}=0</p><p></p><p>Hence,</p><p></p><p>\begin{gathered}\rm\implies \:\boxed{\sf{  \:\rm \: cos55\degree + cos65\degree + cos175\degree = 0 \: \: }} \\ \end{gathered}⟹ cos55°+cos65°+cos175°=0</p><p></p><p></p><p>

Similar questions