Math, asked by shekhawatanita273, 8 months ago

cos60°= 2 cos- 30° - 1​

Answers

Answered by dkyadav94
4

Step-by-step explanation:

cos30= sqr(3)/2

cos60= 1/2

2cos^2(30) - 1 = cos60

2(cos30)^2 -1

2(sqr(3)/2)^2 -1

2(3/4) -1

3/2 -1

1/2

1/2 = cos60

HERE IS YOUR ANSWER. HOPES IT HLPS YOU. MARK ME AS A BRAINLIST. THANKUUUUUUU

Answered by Anonymous
18

 \red{\large{\underline{\underline{ \rm{To \: Prove: }}}}}

 \tt{ \cos60 \degree  = 2 \cos - \:  30 \degree - 1}

 \red{\large{\underline{\underline{ \rm{Let's \: Prove \: It: }}}}}

L.H.S

We know value of cos 60°, So by putting the value we have:

 \tt{\cos60 \degree  =  \dfrac{1}{2}}

R.H.S

 \tt2  \: { \cos}^{2} \:  30 \degree - 1

 \tt2 \:  ({ \cos30 \degree) }^{2}  - 1

We know value of cos 30°, So by putting the value we have:

\tt2 \times   ({ { \dfrac{ \sqrt{3} }{2}) }^{2} } - 1

Now (√3)², √ and ² (sq) will get cancel and 2² = 4, So we have,

 \tt(2 \times  \dfrac{3}{4})  - 1

  \tt\dfrac{3}{2}  - 1

  \tt{ \dfrac{3 - 2}{2} }

 \tt \dfrac{1}{2}

L.H.S = R.H.S

 \green{ \underline{ \boxed{ \tt{ \dfrac{1}{2}  =  \dfrac{1}{2} }}}}

 \sf{ \purple{Hence \: Proved!!}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions