Cos6a+6cos4a+15cos2a+10/cos5a+5cos3a+10cosa=2cosa
Answers
Answered by
2
Answer:
(Cos6A + 6Cos4A + 15Cos2A + 10)/(Cos5A + 5Cos3A + 10CosA) = 2CosA
Step-by-step explanation:
Cos6a+6cos4a+15cos2a+10/cos5a+5cos3a+10cosa=2cosa
Lets solve numerator First
Cos6a+6cos4a+15cos2a+10
= Cos6A + Cos4A + 5Cos4A + 5Cos2A + 10Cos2A + 10
= (Cos6A + Cos4A ) + 5(Cos4A + Cos2A) + 10(Cos2A + 1)
Using CosA + CosB = 2Cos((A+B)/2)Cos((A-B)/2)
& Cos2A + 1 = 2 Cos²A
= 2Cos5ACosA + 5*2Cos3ACosA + 10(2 Cos²A)
= 2CosA(Cos5A + 5Cos3A + 10CosA)
LHS
= 2CosA(Cos5A + 5Cos3A + 10CosA)/ (Cos5A + 5Cos3A + 10CosA)
= 2CosA
= RHS
QED
Proved
(Cos6A + 6Cos4A + 15Cos2A + 10)/(Cos5A + 5Cos3A + 10CosA) = 2CosA
Answered by
0
Answer:
for above given question answer is the 2cos@
Similar questions