cos⁶A-sin⁶A= 1-3/4 sin²2A
Answers
Answer:
sin^6A = (sin^2A)^3
cos^6A = (cos^2A)^3
We know that;
x^3+y^3 = (x+y)(x^2-xy+y^2)
sin^6A+cos^6A = (sin^2A+cos^A)(sin^4A-sin^2Acos^2A+cos^4A)
We can write;
x^2+y^2 = (x+y)^2-2xy
sin^4A+cos^4A = (sin^2A+cos^2A)^2-2sin^2Acos^2A
We know that sin^2A+cos^A = 1
sin^6A+cos^6A
= (sin^2A+cos^A)(sin^4A-sin^2Acos^2A+cos^4A)
= 1xx((sin^2A+cos^2A)^2-2sin^2Acos^2A-sin^2Acos^2A)
= 1xx(1-3sin^2Acos^2A)
sin2A = 2sinAcosA
(sin2A)^2 = 4sin^2Acos^2A
3/4sin^2(2A) = 3sin^2Acos^2A
So this gives the answer as;
sin^6A+cos^6A
=(1-3sin^2Acos^2A)
= 1-3/4sin^2(2A)
Step-by-step explanation:
LHS = cos^6 A + sin^6 A
= (cos²A)^3 + (sin²A)^3
Using identity (a + b)^3 = a^3 +b^3 + 3ab ( a+b)
=> a^3 +b^3 = ( a+ b)^3 -3ab ( a+ b)
So, (cos²A)^3 + ( sin² A)^3
=(cos²A+ sin²A)^3 - 3 cos²A sin²A(cos²A+sin² A)
= 1- 3cos² A sin² A ( since sin² A + cos² A = 1 ) ……………….. LHS
Now, RHS = { 1 + 3cos² ( 2A)} / 4
= { 1 + 3 ( cos 2A )² } /4
= {1+ 3 ( cos² A - sin² A )² } /4 { since cos 2A = cos² A - sin² A)
= { 1+ 3( cosA + sinA)² ( cosA - sinA)² }/4
= {1+ 3( 1 + 2sinA cosA) ( 1 - 2sinA cosA)} /4
= { 1 + 3 ( 1 - 4 sin² A cos² A) } / 4
= { 1 + 3 - 12 sin² A cos² A} /4
= (4 - 12 sin² A cos² A) /4
=> 1 - 3 sin²A cos ² A ………….. RHS