CosA/1-tanA - sin2A/cosA - sinA = sinA+cosA.
Answers
Answered by
165
cosA/1-tanA-sin²A/cosA-sinA
=cosA/{1-(sinA/cosA)}-sin²A/(cosA-sinA)
=cosA/{(cosA-sinA)/cosA}-sin²A/(cosA-sinA)
=cos²A/(cosA-sinA)-sin²A/(cosA-sinA)
=(cos²A-sin²A)/(cosA-sinA)
=(cosA+sinA)(cosA-sinA)/(cosA-sinA)
=sinA+cosA (Proved)
=cosA/{1-(sinA/cosA)}-sin²A/(cosA-sinA)
=cosA/{(cosA-sinA)/cosA}-sin²A/(cosA-sinA)
=cos²A/(cosA-sinA)-sin²A/(cosA-sinA)
=(cos²A-sin²A)/(cosA-sinA)
=(cosA+sinA)(cosA-sinA)/(cosA-sinA)
=sinA+cosA (Proved)
Answered by
37
cosA/1-tanA-sin²A/cosA-sinA
=cosA/{1-(sinA/cosA)}-sin²A/(cosA-sinA)
=cosA/{(cosA-sinA)/cosA}-sin²A/(cosA-sinA)
=cos²A/(cosA-sinA)-sin²A/(cosA-sinA)
=(cos²A-sin²A)/(cosA-sinA)
=(cosA+sinA)(cosA-sinA)/(cosA-sinA)
=sinA+cosA (Proved)
Similar questions