Math, asked by keerthika1963, 1 year ago

CosA/1-tanA+sinA/1-cotA=sinA+cotA

Answers

Answered by ShuchiRecites
21

Correct Question

cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA

Solution

L.H.S → cosA/(1 - tanA) + sinA/(1 - cotA)

→ cosA/(1 - sinA/cosA) + sinA/(1 - cosA/sinA

→ [cosA/(cosA - sinA)/cosA] + [sinA/(sinA - cosA)/sinA]

→ cos²A/(cosA - sinA) + sin²A/(sinA - cosA)

→ cos²A/(cosA - sinA) + sin²A/-(cosA - sinA)

→ cos²A/(cosA - sinA) - sin²A/(cosA - sinA)

Since denominator are same,

→ (cos²A - sin²A)/(cosA - sinA)

→ (cosA + sinA)(cosA - sinA)/(cosA - sinA)

Here (cosA - sinA) cancelled out,

→ cosA + sinA = R.H.S

Q.E.D

Answered by Anonymous
7

Answer:

cos A / (1 - tan A) + sin A /(1 - cot A) = sin A + cos A

LHS = cos A / (1 - tan A) + sin A /(1 - cot A)

= cos A / (cos A - sin A) + sin A / (sin A - cos A)

= cos A / (cos A - sin A) - sin A / (cos A - sin A)

= (cos A - sin A) / (cos A - sin A)

= (cos A + sin A) (cos A - sin A) / (cos A - sin A)

= (cos A + sin A).

Hence proved.

Attachments:
Similar questions