Math, asked by snehachichghare8333, 8 months ago

cosa-cosasina/cosa+cosasina

Answers

Answered by rajeevr06
2

Answer:

 \frac{ \cos( \alpha ) -  \cos( \alpha )  \sin( \alpha )  }{ \cos( \alpha )  +  \cos( \alpha ) \sin( \alpha )  }  =  \frac{ \cos( \alpha ) -  \cos( \alpha )  \sin( \alpha )  }{ \cos( \alpha )  +  \cos( \alpha ) \sin( \alpha )  }  \times  \frac{ \cos( \alpha ) -  \cos( \alpha )  \sin( \alpha )  }{ \cos( \alpha )   -   \cos( \alpha ) \sin( \alpha )  }  =    \frac{ (\cos \alpha  -  \cos \alpha   \sin \alpha ) {}^{2}   }{ \cos {}^{2} ( \alpha )   -   \cos {}^{2} ( \alpha ) \sin {}^{2} ( \alpha )  }  =

 \frac{ \cos {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha ) \sin {}^{2} ( \alpha )  - 2 \cos {}^{2} ( \alpha ) \sin( \alpha )   }{ \cos {}^{2} ( \alpha )  -  \cos {}^{2} ( \alpha )   \sin {}^{2} ( \alpha ) }   =

 \frac{ \cos {}^{2} ( \alpha ) (1 +  \sin {}^{2} ( \alpha )  - 2  \sin( \alpha ))   }{ \cos {}^{2} ( \alpha )(1  -  \sin {}^{2} ( \alpha ) )}   =

 \frac{(1 -  \sin \alpha) {}^{2}   }{ \cos {}^{2}  \alpha  }  = ( \frac{1}{ \cos \alpha  }  -  \frac{ \sin \alpha  }{ \cos \alpha  } ) {}^{2}  = ( \sec \alpha   -  \tan \alpha  ) {}^{2}

Similar questions