cosA . sin(B-C)+cosB . sin(C-A)+ cosC . sin(A-B)=0
Attachments:
Answers
Answered by
64
Answer:
To Prove: cos A . sin ( B - C ) + cos B . sin ( C - A ) + cos C . sin ( A - B ) = 0
We use the the following result,
sin ( x - y ) = sin x . cos y - cos x . sin y
LHS
= cos A . sin ( B - C ) + cos B . sin ( C - A ) + cos C . sin ( A - B )
= cos A ( sin B . cos C - cos B . sin C ) + cos B ( sin C . cos A - cos C . sin A ) + cos C ( sin A . cos B - cos A . sin B )
= cos A . sin B . cos C - cos A . cos B . sin C + cos B . sin C . cos A - cos B . cos C . sin A + cos C . sin A . cos B - cos C . cos A . sin B
= 0 + 0 + 0
= 0
RHS
= 0
LHS = RHS
Hence, Proved
Answered by
0
use the basic trigonometry formula of sin(A-B)
Attachments:
Similar questions