Math, asked by sandip191, 1 year ago

(cosA-sinA) (1+tanA)/2cos^2A-1=secA

Answers

Answered by Anonymous
8
Hope this helps you


Attachments:
Answered by siddhartharao77
36
Given LHS = (cosA - sinA)(1 + tan A)/2 cos^2A.

 \frac{(1 + tan A) ( cos A - sinA)}{2 cos^2A - 1}

 \frac{(1 + tan A)(cosA-sinA)}{-(cos^2A + sin^2A)  + 2cos^2A}

 \frac{(1 + tan A)(cosA-sinA)}{-cos^2A - sin^2A + 2cos^2A }

 \frac{(1 + tanA)(cos A - sinA)}{cos^2A - sin^2A}


We know that a^2 - b^2 = (a - b)(a + b)

 \frac{(1 + tanA)(cosA - sinA)}{(cosA - sinA)(cosA + sinA)}

 \frac{(1 + tanA)}{cosA+sinA}

 \frac{1 +  \frac{sinA}{cosA} }{cosA + sinA}

 \frac{ \frac{cosA + sinA}{cosA} }{cosA + sinA}

 \frac{1}{cosA}

secA.


LHS = RHS.


Hope this helps!
Similar questions