Math, asked by wish7dash, 1 year ago

(cosA²)²-cos²A=(sinA²)²-sin²A

Answers

Answered by RvChaudharY50
47

{\large\bf{\mid{\overline{\underline{Correct\:Question:-}}}\mid}}

\textbf{Prove that}

  • (cos²A)² - cos²A = (sin²A)² - sin²A

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • cos²A - 1 = sin²A
  • sin²A - 1 = cos²A

________________

\Large\underline{\underline{\sf{Solution}:}}

\textbf{Lets Solve LHS and RHS seperately}

\Large\bold\star\underline{\underline\textbf{LHS}}

  \red \leadsto   \green{(\cos^{2} (A))^{2}  - \cos^{2} (A)} \\  \\ taking \: \cos^{2} (A) \: common \\  \\ \red \leadsto \:  \green{\cos^{2} (A)(\cos^{2} (A) - 1)} \\  \\ taking \: ( - 1) \: common \: now \\  \\  \red\leadsto \:  \green{( - 1){\cos^{2} (A)(1  - \cos^{2} (A) )}} \\  \\ \red\leadsto \:  \green{( - 1){\cos^{2} (A) \: \sin^{2} (A)}} \\  \\ \red\leadsto \: \large\boxed{\bold{LHS}}

___________________________________

\Large\bold\star\underline{\underline\textbf{RHS}}

  \red \leadsto   \pink{(\sin^{2} (A))^{2}  - \sin^{2} (A)} \\  \\ taking \: \sin^{2} (A) \: common \\  \\ \red \leadsto \:  \pink{\sin^{2} (A)(\sin^{2} (A) - 1)} \\  \\ taking \: ( - 1) \: common \: now \\  \\  \red\leadsto \:  \pink{( - 1){\sin^{2} (A)(1  - \sin^{2} (A) )}} \\  \\ \red\leadsto \:  \pink{( - 1){\sin^{2} (A) \: \cos^{2} (A)}} \\  \\ \red\leadsto \: \large\boxed{\bold{ RHS}}

________________________________

From Both we can say that,

\large\boxed{\bold{LHS}} = \large\boxed{\bold{ RHS}} \:

\LARGE\boxed{\bold{Hence,\:Proved}}


Anonymous: Great answer
Answered by Anonymous
4

Answer:

(Cos²(A)²-cos²(A)

Taking cos²(A)(cos²(A)-1)

Taking (-1) common

(-1)cos²Asin²A

Similar questions