Math, asked by ansaritamanna60, 7 months ago

cosec^2 teta evaluate ​

Answers

Answered by RimjhimJaiswal
0

Step-by-step explanation:

cosec^2 theta=1+cot^2 theta

This is answer of your question

Answered by AntonyLigin
3

Answer:

cosec {}^{2} Ø =  \frac{1}{sin {}^{2} Ø} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{1 -  {cos}^{2}Ø}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{1 -  {cos}^{2}Ø}  \times  \frac{1 + cos {}^{2}Ø}{1 +  {cos}^{2}Ø}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1 + cos {}^{2}Ø}{(1 - cosØ)(1 + cosØ)}

Similar questions