Math, asked by hinastha1, 11 months ago

cosec 2A + cosec 4A = cot A-cot 4A​

Attachments:

Answers

Answered by SharmaShivam
14

Question:

\sf{Prove\:that\:cosec2A+cosec4=cotA-cot4A}

Identities Used:

\sf{cosecA=\dfrac{1}{sinA}}\\\sf{sin2A=2sinAcosA}\\\sf{\dfrac{cosA}{sinA}=cotA}\\\sf{cos2A=2cos^2A-1}

Solution:

\sf{Taking\:L.H.S.}

\sf{=cosec2A+cosec4A}

\sf{=\dfrac{1}{sin2A}+\dfrac{1}{sin4A}}

\sf{=\dfrac{1}{sin2A}+\dfrac{1}{2sin2Acos2A}}

\sf{Taking\:L.C.M.}

\sf{=\dfrac{2cos2A+1}{2sin2Acos2A}}

\sf{=\dfrac{2cos2A+1+cos4A-cos4A}{sin4A}}

\sf{=\dfrac{2cos2A+1+cos4A}{sin4A}-\dfrac{cos4A}{sin4A}}

\sf{=\dfrac{2cos2A+1+2cos^2A-1}{sin4A}-cot4A}

\sf{=\dfrac{2cos2A\left(1+cos2A\right)}{2sin2Acos2A}-cot4A}

\sf{=\dfrac{1+2cos^2A-1}{sin2A}-cot4A}

\sf{=\dfrac{2cos^2A}{2sinAcosA}-cot4A}

\sf{=\dfrac{cosA}{sinA}-cot4A}

\sf{=cotA-cot4A}

\bf{\sf{HENCE\:PROVED}}

Answered by Anonymous
0

Step-by-step explanation:

Given: cosec 2A + cosec 4A = cot A-cot 4A

To prove: L.H.S = R.H.S

Taking L.H.S

⇒Cosec 2 A + Cot 4 A

⇒Cosec 2 A + Cot 4 A⇒Cosec 2 A + ( Cot 2 A )2

Cosec 2A + (Cosec 2A1)2

⠀⠀⠀(Since, 1 + cot theta= Cosec theta)

Cosec 2A +Cosec 4A + 1 2Cosec 2A

Cosec 4A + 1 Cosec 2A

Cosec 4A + 1 (1+ Cot 2A)

Cosec 4A + 1 1 Cot 2A

Cosec 4A Cot 2A

Or,

Cosec 2A + Cosec 4A = Cot A Cot 4A

Hence, L.H.S = R.H.S

Similar questions