cosec 48° + cosec 96° +
cosec 192° + cosec 384° = 0)
Answers
Answer:
> cosec 48 = cosec (90 - 42)
=> cosec48 = sec 42
=> cosec48 = 1/cos 42
_______
and
=> cosec 192 = cosec (270 - 78)
=> cosec192 = -sec 78
=> cosec192 = -1/cos 78
_______
So,
=> cosec 48 + cosec 192
= 1/cos 42 - 1/cos 78
=> cosec48 + cosec192
=(cos 78 - cos 42)/(cos 78 × cos 42)
= -(2×sin 60 × sin 18)/{cos (60 + 18) × cos (60 - 18)} {Apply cos C - cos D formula}
= -(2× sin 60 × sin 18)/{cos2 60 - sin2 18}
= -(2× √3/2 × (√5 - 1)/4}/{(1/2)2 - ((√5 - 1)/4)2 }
= -2√3
__________
Again,
Now,
=> cosec 384 = cosec (360 + 24)
=> cosec384 = cosec 24
_________
So,
=> cosec 96 + cosec 24
= 1/sin 96 + 1/sin 24
= (sin 96 + sin 24)/(sin 96 × sin 24)
= (2× sin 60 ×cos 36)/{sin (60 + 36) × sin (60 - 36)} {Apply cos C - cos D formula}
= (2×sin 60 ×cos 36)/{sin2 60 - sin2 36}
= (2× √3/2 ×(√5 + 1)/4}/{(√3/2)2 - ((√5 + 1)/4)2 }
= 2√3
__________
So,
=> cosec 48 + cosec 96 + cosec 192 + cosec 384
=> -2√3 + 2√3 = 0
_______________[PROVED