cosec^4A - cosec^2A = cot^4 A+ cot^2A
Answers
Answered by
3
Step-by-step explanation:
Solution :-
LHS :-
cosec^4A - cosec^2A
=> Cosec^2 A × Cosec^2 A - Cosec^2 A
=> Cosec^2 A (Cosec^2 A - 1)
We know that
Cosec^2 A - Cot^2 A = 1
Cot^2 A = Cosec^2 A -1 and
Cosec^2 A = 1+Cot^2 A
=> Cosec^2 A ( Cot^2 A)
=> (1+Cot^2 A) (Cot^2 A)
=> Cot^2 A + Cot^2 A× Cot^2 A
=> Cot^2 A + Cot^4 A
=> RHS
LHS = RHS
or
RHS :
Cot^2 A + Cot^4 A
=> Cot^2A(1+Cot^2A)
We know that
Cosec^2 A - Cot^2 A = 1
Cot^2 A = Cosec^2 A -1 and
1+Cot^2 A = Cosec^2 A
=> (Cosec^2 A -1)(Cosec^2 A)
=> cosec^2 A× Cosec^2 A - Cosec^2 A
=> Cosec^4 A - Cosec^2 A
=> LHS
RHS = LHS
Hence, Proved.
Used formulae:-
- Cosec^2 A - Cot^2 A = 1
- Cot^2 A = Cosec^2 A -1
- Cosec^2 A = 1+Cot^2 A
Similar questions