Cosec^6A-cot^6A=1+3cot^2A+3cot^4A
Answers
Answer:
First let us convert \csc ^{2} A \text { into } 1+\cot ^{2} A after this place 1 + cot^2 A in place of \csc^{2} of \left(\left(\csc ^{2} A\right)^{3}-\left(\cot ^{2} A\right)^{3}\right)we get \left(\left(1+\cot ^{2} A\right)^{3}-\left(\cot ^{2} A\right)^{3}\right)
So, \left(\left(1+\cot ^{2} A\right)^{3}-\left(\cot ^{2} A\right)^{3}\right)=3 \cot ^{2} A \cdot \csc ^{2} A+1
Place \cot ^{2} A=a,{in}\left(\left(1+\cot ^{2} A\right)^{3}-\left(\cot ^{2} A\right)^{3}\right) we get
\begin{array}{l}{\left((1+a)^{3}-(a)^{3}\right)=\left(\left(1^{3}+a^{3}+3 a(1+a)\right)-(a)^{3}\right)} \\ \\{\left(\left(1^{3}+a^{3}+3 a(1+a)\right)-(a)^{3}\right)=1+3 a(a+1)}\end{array}
Putting back a=\cot ^{2} A
\bold{1+3 a(a+1)=1+3 \cot ^{2} A\left(\cot ^{2} A+1\right)}
\bold{1+3 a(a+1)=1+3 \cot ^{2} A. \csc^{2} A}
Hence LHS = RHS.
Step-by-step explanation:
if u like it then follow me and make me as a brainliest answer.