Math, asked by Soumyadipto, 1 year ago

(cosec^6A-cot^6A)=3cot^2Acosec^2A+1
Prove

Answers

Answered by swetha0202
42
hi! hope this answer helps u :)
Attachments:
Answered by phillipinestest
37

 \bold{\left(\left(\csc ^{2} A\right)^{3}-\left(\cot ^{2} A\right)^{3}\right)=3 \cot ^{2} A \cdot \csc ^{2} A+1}

Solution:

First let us convert \csc ^{2} A \text { into } 1+\cot ^{2} A after this place 1 + cot^2 A in place of \csc^{2} of \left(\left(\csc ^{2} A\right)^{3}-\left(\cot ^{2} A\right)^{3}\right)we get \left(\left(1+\cot ^{2} A\right)^{3}-\left(\cot ^{2} A\right)^{3}\right)

So, \left(\left(1+\cot ^{2} A\right)^{3}-\left(\cot ^{2} A\right)^{3}\right)=3 \cot ^{2} A \cdot \csc ^{2} A+1

Place \cot ^{2} A=a,{in}\left(\left(1+\cot ^{2} A\right)^{3}-\left(\cot ^{2} A\right)^{3}\right)  we get  

\begin{array}{l}{\left((1+a)^{3}-(a)^{3}\right)=\left(\left(1^{3}+a^{3}+3 a(1+a)\right)-(a)^{3}\right)} \\ \\{\left(\left(1^{3}+a^{3}+3 a(1+a)\right)-(a)^{3}\right)=1+3 a(a+1)}\end{array}

Putting back a=\cot ^{2} A  

 \bold{1+3 a(a+1)=1+3 \cot ^{2} A\left(\cot ^{2} A+1\right)}

 \bold{1+3 a(a+1)=1+3 \cot ^{2} A. \csc^{2} A}

Hence LHS = RHS.  

Similar questions