Cosec(90-theta)-tan^2theta÷4(cos^2 48+cos^2 42) - 2tan^2 30 sec^2 52 sin^2 28÷cos^2 70- tan^2 20=?
Answers
Solution:
[ There are many errors in the question , plz check ]
It may be like this:
Given
Cosec²(90-theta)-tan²theta÷4(cos²48+cos² 42) - 2tan² 30 sec² 52 sin² 28÷cosec² 70- tan² 20?
______________________
we are using following:
i) cosec(90-theta) = sec (theta)
ii)cos 48 = cos(90-42) = sin 42
iii)tan30° = 1/√3
iv) sec 52° = sec(90-28)
= cosec 28
v)cosec70° = cosec(90-70)
= sec 20°
vi) tan 30°= 1/√3
And
a) sec²A - tan²A = 1
b) sin²A+cos²A = 1
c) cosecAsinA = 1
_____________________
Now ,
Cosec²(90-theta)-tan²theta÷4(cos²48+cos² 42) - 2tan² 30 sec² 52 sin² 28÷cosec² 70- tan² 20
= [sec² theta - tan² theta]/[4(sin²42+cos²42)]-[2tan²30cosec²28sin²28]/[sec²20-tan²20]
= 1/(4×1) - [2×(1/√3)²×1]/1
= 1/4 - 2/3
= (3-4)/12
= -1/12
Therefore,
Cosec²(90-theta)-tan²theta÷4(cos²48+cos² 42) - 2tan² 30 sec² 52 sin² 28÷cosec² 70- tan² 20 = -1/12
••••
Answer:-
-5/12
Step by step explanation is in above photo.