cosec (90 + theta )+ x cos theta cot (90 + theta) = sin (90 + theta)
Answers
Answer:
Step-by-step explanation:
The given equation is:
Now, we know that , and
Substituting these values in the given equation, we get
Thus, the value of x is .
Step-by-step explanation:
cosec(90+θ)+xcosθcot(90+θ)=sin(90+θ)
Now, we know that cosec(90+{\theta})=sec{\theta}cosec(90+θ)=secθ , cot(90+{\theta})=-tan{\theta}cot(90+θ)=−tanθ and sin(90+{\theta})=cos{\theta}sin(90+θ)=cosθ
Substituting these values in the given equation, we get
sec{\theta}-xcos{\theta}tan{\theta}=cos{\theta}secθ−xcosθtanθ=cosθ
\frac{1}{cos{\theta}}-xcos{\theta}\frac{sin{\theta}}{cos{\theta}}=cos{\theta}
cosθ
1
−xcosθ
cosθ
sinθ
=cosθ
\frac{1}{cos{\theta}}-xsin{\theta}=cos{\theta}
cosθ
1
−xsinθ=cosθ
1-xsin{\theta}cos{\theta}=cos^2{\theta}1−xsinθcosθ=cos
2
θ
1-cos^2{\theta}=xsin{\theta}cos{\theta}1−cos
2
θ=xsinθcosθ
sin^2{\theta}=xsin{\theta}cos{\theta}sin
2
θ=xsinθcosθ
x=\frac{sin{\theta}}{cos{\theta}}x=
cosθ
sinθ
x=tan{\theta}x=tanθ