Math, asked by lokeshsunithao7, 9 months ago

cosec a(1-cos a) (cosec a+cot a) 1​

Answers

Answered by chaitragouda8296
0

To Prove :

cosec A ( 1 - cos A ) ( cosec A + cot A ) = 1

Identities :

 {sin}^{2}  +  {cos}^{2}  = 1 \\ i.e. {sin}^{2}  = 1 -  {cos}^{2}  \\  \\ cosec =   \frac{1}{sin}  \\  \\ cot =  \frac{cos}{sin}

Solution :

LHS =   \cosec(1 -  \cos) (cosec + cot) \\  \\  \:  \:  \:  \:  =  \:  \frac{1}{sin} (1 - cos)( \frac{1}{sin}  +  \frac{cos}{sin} ) \\  \\  \:  \:  \:  \:  \:  \:  =  \:  \frac{1 - cos}{sin}  \times  \frac{1 + cos}{sin}  \\  \\ numerator \:  \: is \:  \: in \:  \: the \:  \: form \:  \: of \:  \: (x - y)(x + y) =  {x}^{2}  -  {y}^{2}  \\  \\  \:  \:  \:  \:  =  \:  \frac{ {1}^{2} -  {cos}^{2}  }{ {sin}^{2} }  \\  \\  \:  \:  \:  \:  =  \:  \frac{ {sin}^{2} }{ {sin}^{2} }  \\  \\  \:  \:  \:  \:  =  \: 1 \\  \\  \:  \:  \:  \:  =  \: RHS

Hope it's helpful ......

Please mark it as Brainliest .....

Similar questions