Math, asked by alia79, 1 year ago

(cosecθ + cotθ)² = 1-cosθ / 1+cosθ

Prove that...

Answers

Answered by Anonymous
46


Hey guys here is your answer!!!!


=======================


In attachment
.


I HOPE IT WILL HELP YOU ✌️☺️


Thank you ✌️

Attachments:
Answered by Deepsbhargav
24
 = > {(cosec \alpha - cot \alpha ) }^{2} = \frac{1 - cos \alpha }{1 + cos \alpha } \\ \\ = > {( \frac{1}{sin \alpha } - \frac{cos \alpha }{sin \alpha } )}^{2} = \frac{1 - cos \alpha }{1 + cos \alpha } \\ \\ = > {( \frac{1 - cos \alpha }{sin \alpha } )}^{2} = \frac{1 - cos \alpha }{1 + cos \alpha } \\ \\ = > \frac{(1 - cos \alpha )(1 - cos \alpha )}{ {sin}^{2} \alpha } = \frac{1 - cos \alpha }{1 + cos \alpha } \\ \\ = > \frac{(1 - cos \alpha )(1 - cos \alpha )}{1 - {cos}^{2} \alpha } = \frac{1 - cos \alpha }{1 + cos \alpha } \\ \\ = > \frac{(1 - cos \alpha )(1 - cos \alpha )}{(1 + cos \alpha )(1 - cos \alpha )} = \frac{1 - cos \alpha }{1 + cos \alpha } \\ \\ = > \frac{1 - cos \alpha }{1 + cos \alpha } = \frac{1 - cos \alpha }{1 + cos \alpha }
______________________[PROVED]

=========================================
_-_-_-_☆BE \: \: \: \: BRAINLY☆_-_-_-_
Similar questions