Math, asked by Suhanacool2454, 1 year ago

Cosec-sin=m3 and sec-cos=n3 then prove that m4n2+m2n4=1

Answers

Answered by hukam0685
8
As we know that
cosec \: x =  \frac{1}{sin \: x}  \\  \\ sec \: x =  \frac{1}{cos \: x}  \\  \\
Given
cosec \: x - sin \: x =  {m}^{3}  \\  \\  \frac{1}{sin \: x}  - sin \: x =  {m}^{3}  \\  \\  \frac{1 -  {sin}^{2}x }{sin \: x}  =  {m}^{3}  \\  \\  \frac{ {cos}^{2}x }{sin \: x}  =  {m}^{3}  ...eq1\\  \\
By the same way
sec \: x - cos \: x =  {n}^{3}  \\  \\  \frac{1}{cos \: x}  - cos \: x =  {n}^{3}  \\  \\  \frac{1 -  {cos}^{2}x }{cos \: x}  =  {n}^{3}  \\  \\  \frac{ {sin}^{2}x }{cos \: x}  =  {n}^{3}  ...eq2\\  \\

Squaring both side eq1
\frac{ {sin}^{4}x }{ {cos}^{2} \: x}  =  {n}^{6}  \\  \\ put \: value \: of \:  {cos}^{2} x \: from \: second \: equation \\  \\ \frac{ {sin}^{4}x }{ {m}^{3} sin\: x }  =  {n}^{6} \\  \\  {sin}^{3} x =  {m}^{3}  {n}^{6}  \\  \\  {sin}^{3}\: x = ( {m {n}^{2} })^{3}  \\  \\ compare \: base \: sin \: x = m {n}^{2}  \\  \\

Thus put the value of sin x in any equation and find cos x,
cos \: x = n {m}^{2}  \\  \\
Now we know that

 {sin}^{2} x +  {cos}^{2} x = 1 \\  \\  ({m {n}^{2} })^{2}+  {(n {m}^{2})}^{2} = 1 \\  \\  {m}^{2}  {n}^{4}  +  {n}^{2}  {m}^{4}  = 1 \\  \\
Hence proved
Similar questions