cosec theta -cot theta =1/4 ,then find the value of cosec theta +cot theta
Answers
Answered by
7
According to question,
Cosec theta - Cot theta = 1/4
Expanding it into cos and sin
1/Sin theta - Cos theta / Sin theta = 1/4
taking the denominator,
W get,
(1 - Cos theta) / Sin theta = 1/4
Now doing the reciprocal on both the sides
We get,
(Sin theta) / (1-Cos theta) = 4
Multiplying the numerator and the denominator of LHS with (1 +Cos theta)
we get,
Sin theta * (1 + Cos theta) / (1 - Cos theta) * (1 + Cos theta) = 4
We know,
(a+b) (a-b) = a^2 -b^2
So (1 + Cos theta) (1- Cos theta) = 1- Cos^2 theta
= Sin^ theta
Thus putting this term in the above equation,
Sin theta * (1 + Cos theta) / Sin^2 theta = 4
(1 + Cos theta) / Sin theta = 4
Separating the denominator,
1/Sin theta + Cos theta / Sin theta = 4
Cosec theta + Cot theta = 4
Thus, the value of Cosec theta + Cot theta is 4
Cosec theta - Cot theta = 1/4
Expanding it into cos and sin
1/Sin theta - Cos theta / Sin theta = 1/4
taking the denominator,
W get,
(1 - Cos theta) / Sin theta = 1/4
Now doing the reciprocal on both the sides
We get,
(Sin theta) / (1-Cos theta) = 4
Multiplying the numerator and the denominator of LHS with (1 +Cos theta)
we get,
Sin theta * (1 + Cos theta) / (1 - Cos theta) * (1 + Cos theta) = 4
We know,
(a+b) (a-b) = a^2 -b^2
So (1 + Cos theta) (1- Cos theta) = 1- Cos^2 theta
= Sin^ theta
Thus putting this term in the above equation,
Sin theta * (1 + Cos theta) / Sin^2 theta = 4
(1 + Cos theta) / Sin theta = 4
Separating the denominator,
1/Sin theta + Cos theta / Sin theta = 4
Cosec theta + Cot theta = 4
Thus, the value of Cosec theta + Cot theta is 4
Similar questions