Cosec theta + cot theta = (2cosec theta cot theta) /root 2 cot theta
Answers
Answered by
0
Answer:
cosecθ−cotθ=
2
cotθ
\implies cosec \theta = \sqrt{2} cot \theta + cot \theta⟹cosecθ=
2
cotθ+cotθ
\implies cosec \theta = cot \theta (\sqrt{2} + 1)⟹cosecθ=cotθ(
2
+1)
\implies \frac{cosec \theta }{\sqrt{2} + 1}=cot \theta⟹
2
+1
cosecθ
=cotθ
\implies \frac{cosec \theta \times (\sqrt{2} - 1)}{2 - 1}= cot \theta⟹
2−1
cosecθ×(
2
−1)
=cotθ
( By rationalizing )
\implies \frac{ \sqrt{2} cosec \theta - cosec \theta}{1}=cot \theta⟹
1
2
cosecθ−cosecθ
=cotθ
\implies \sqrt{2} cosec \theta - cosec \theta = cot\theta⟹
2
cosecθ−cosecθ=cotθ
\implies \sqrt{2} cosec \theta = cot\theta+cosec \theta⟹
2
cosecθ=cotθ+cosecθ
Hence, proved.
Similar questions