(cosec theta -sin theta ) ( sec theta - cos theta) ( tan theta + cot theta ) = 1
Answers
Answered by
439
To prove,
(cosec θ - sin θ)(sec θ - cos θ)(tan θ + cot θ)=1
Proof:
LHS =(1/sin θ - sin θ)(1/cos θ - cos θ)(tan θ+1/tan θ)
=(1-sin²θ)/sinθ (1-cos²θ)/cosθ(1+tan²θ)/tanθ
=(cos²θ)/sinθ (sin²θ)/cosθ sec²θ/tanθ
=cos θ sin θ (1/cos²θ)/(sinθ/cosθ)
=cos θ sin θ(1/cos²θ)(cosθ/sinθ)
=cos θ sin θ (cos θ/sin θ cos²θ)
=cos θ sin θ (1/sin θ cos θ)
=cos θ sin θ/sin θ cos θ
=1=RHS
∴ Hence proved
Hope it Helps!!
(cosec θ - sin θ)(sec θ - cos θ)(tan θ + cot θ)=1
Proof:
LHS =(1/sin θ - sin θ)(1/cos θ - cos θ)(tan θ+1/tan θ)
=(1-sin²θ)/sinθ (1-cos²θ)/cosθ(1+tan²θ)/tanθ
=(cos²θ)/sinθ (sin²θ)/cosθ sec²θ/tanθ
=cos θ sin θ (1/cos²θ)/(sinθ/cosθ)
=cos θ sin θ(1/cos²θ)(cosθ/sinθ)
=cos θ sin θ (cos θ/sin θ cos²θ)
=cos θ sin θ (1/sin θ cos θ)
=cos θ sin θ/sin θ cos θ
=1=RHS
∴ Hence proved
Hope it Helps!!
sivaprasath:
Mark as brainliest
Answered by
10
Step-by-step explanation:
Given exp.
(
cosθ
1
−cosθ)(
sinθ
1
−sinθ)(
sinθ
cosθ
+
cosθ
sinθ
)
=
sin
2
θcos
2
θ
sin
2
θcos
2
θ
=1
Similar questions