∫cosecxdx is equal to:
Answers
Answered by
7
Answer:
I=∫cscxdx
⇒I=∫
(cscx−cotx)
cscx(cscx−cotx)
dx
Put cscx−cotx=t
⇒(−cscxcotx+csc
x
x)dx=dt
⇒dx=
−cscx(cscx−cotx)
dt
⇒I=∫
cscx−cotx
cscx(cscx−cotx)
.
(cscx−cot
2
x)(cscx)
dt
=∫
t
dt
=log∣t∣+C
∴∫cscxdx=log∣cscx−cotx∣+C
Step-by-step explanation:
hope it helps u
don't forget to thank my answer
mujahidkhanfata66:
thanks
Similar questions