Math, asked by sanyaarora0212, 2 months ago

Coser At1 =(see A+tan A) ²
Corec A-1​

Answers

Answered by mathdude500
1

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:\dfrac{cosecA + 1}{cosecA - 1}  =  {(secA  + tanA)}^{2}

Identities Used :-

 \red{\rm :\longmapsto\:cosecx = \dfrac{1}{sinx}}

 \red{\rm :\longmapsto\: {sin}^{2}x +  {cos}^{2}x = 1}

 \red{\rm :\longmapsto\:secx = \dfrac{1}{cosx}}

 \red{\rm :\longmapsto\:tanx = \dfrac{sinx}{cosx}}

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\:\dfrac{cosecA + 1}{cosecA - 1}

 \rm \:  =  \:  \: \dfrac{\dfrac{1}{sinA} + 1 }{\dfrac{1}{sinA}  - 1}

 \rm \:  =  \:  \: \dfrac{\dfrac{1 + sinA}{sinA} }{\dfrac{1 - sinA}{sinA}}

\rm \:  =  \:  \: \dfrac{1 + sinA}{1 - sinA}

\rm \:  =  \:  \: \dfrac{1 + sinA}{1 - sinA}  \times \dfrac{1 + sinA}{1 + sinA}

\rm \:  =  \:  \: \dfrac{ {(1 + sinA)}^{2} }{ {1}^{2}  -  {sin}^{2}A}

\rm \:  =  \:  \: \dfrac{ {(1 + sinA)}^{2} }{{cos}^{2}A}

\rm \:  =  \:  \:  {\bigg(\dfrac{1 + sinA}{cosA} \bigg) }^{2}

\rm \:  =  \:  \:  {\bigg(\dfrac{1}{cosA} + \dfrac{sinA}{cosA}  \bigg) }^{2}

\rm \:  =  \:  \:  {(secA + tanA)}^{2}

Thus,

\bf :\longmapsto\:\dfrac{cosecA + 1}{cosecA - 1}  =  {(secA  + tanA)}^{2}

Hence, Proved

Additional Information :-

 \red{\rm :\longmapsto\: {sec}^{2}x -  {tan}^{2}x = 1}

 \red{\rm :\longmapsto\: {cosec}^{2}x -  {cot}^{2}x = 1}

 \red{\rm :\longmapsto\:cotx = \dfrac{cosx}{sinx}}

 \red{\rm :\longmapsto\:sin(90 \degree \:  - x) = cosx}

 \red{\rm :\longmapsto\:cos(90 \degree \:  - x) = sinx}

 \red{\rm :\longmapsto\:cosec(90 \degree \:  - x) = secx}

 \red{\rm :\longmapsto\:sec(90 \degree \:  - x) = cosecx}

 \red{\rm :\longmapsto\:tan(90 \degree \:  - x) = cotx}

 \red{\rm :\longmapsto\:cot(90 \degree \:  - x) = tanx}

Similar questions