Cosu/1+sinu=1-sinu/cosu
Answers
Answered by
7
multiplying RHS by (1 - sinu)
RHS = cosu (1-sinu) / 1 + sinu (1-sinu)
= cosu - sinu . cosu / 1 - sin²u
= cosu - sinu . cosu / cos²u
dividing equation by cos u
=> 1-sinu/cosu
= LHS
hence proved
here is your answer hope it helped
RHS = cosu (1-sinu) / 1 + sinu (1-sinu)
= cosu - sinu . cosu / 1 - sin²u
= cosu - sinu . cosu / cos²u
dividing equation by cos u
=> 1-sinu/cosu
= LHS
hence proved
here is your answer hope it helped
Answered by
2
LHS = cosU / 1+sinU
= cosU(1-sinU) / (1+sinU)(1-sinU)
= cosU(1-sinU) / 1-sin^2U
= cosU(1-sinU) / cos^2U
= 1-sinU / cosU
RHS = 1-sinU / cosU
LHS = RHS
= cosU(1-sinU) / (1+sinU)(1-sinU)
= cosU(1-sinU) / 1-sin^2U
= cosU(1-sinU) / cos^2U
= 1-sinU / cosU
RHS = 1-sinU / cosU
LHS = RHS
purvisri02:
what mistake
Similar questions