cosx + cos^2x=1 then sin^8x+2sin^6x+sin^4x=
Answers
Answered by
26
Since cosx+cos^2x=1, then cosx=1-cos^2x=sin^2x.
Then
sin^12x+3sin^10x+3 sin^8x+sin^6x+2 sin^4x+2sin^2x-2
= cos^6x+3cos^5x+3 cos^4x+cos^3x+2 cos^2x+2cosx-2
=cos^6x+3cos^5x+3 cos^4x+cos^3x
=cos^4x (cos^2x+3) + cos^3x(3cos^2+1)
= cos^4x (1-cosx+3) +cos^3x(3-3cosx+1)
= (1-cosx)^2 (4-cosx)+cosx((1-cosx)(4-3cosx)
= (1-2cosx+1-cosx)(4-cosx)+cosx(4-7cosx+3-...
= (2-3cosx)(4-cosx)+ cosx(7-10cosx)
= 8-14cosx+3cos^2x+7cosx-10cos^2x
= 8-7cosx-7cos^2x=8-7(1)
= 1
Then
sin^12x+3sin^10x+3 sin^8x+sin^6x+2 sin^4x+2sin^2x-2
= cos^6x+3cos^5x+3 cos^4x+cos^3x+2 cos^2x+2cosx-2
=cos^6x+3cos^5x+3 cos^4x+cos^3x
=cos^4x (cos^2x+3) + cos^3x(3cos^2+1)
= cos^4x (1-cosx+3) +cos^3x(3-3cosx+1)
= (1-cosx)^2 (4-cosx)+cosx((1-cosx)(4-3cosx)
= (1-2cosx+1-cosx)(4-cosx)+cosx(4-7cosx+3-...
= (2-3cosx)(4-cosx)+ cosx(7-10cosx)
= 8-14cosx+3cos^2x+7cosx-10cos^2x
= 8-7cosx-7cos^2x=8-7(1)
= 1
Answered by
0
Answer:1
Step-by-step explanation:
cosx+cos^2x=1, then cosx=1-cos^2x=sin^2x.
Then
sin^12x+3sin^10x+3 sin^8x+sin^6x+2 sin^4x+2sin^2x-2
= cos^6x+3cos^5x+3 cos^4x+cos^3x+2 cos^2x+2cosx-2
=cos^6x+3cos^5x+3 cos^4x+cos^3x
=cos^4x (cos^2x+3) + cos^3x(3cos^2+1)
= cos^4x (1-cosx+3) +cos^3x(3-3cosx+1)
= (1-cosx)^2 (4-cosx)+cosx((1-cosx)(4-3cosx)
= (1-2cosx+1-cosx)(4-cosx)+cosx(4-7cosx+3-...
= (2-3cosx)(4-cosx)+ cosx(7-10cosx)
= 8-14cosx+3cos^2x+7cosx-10cos^2x
= 8-7cosx-7cos^2x=8-7(1)
= 1
Similar questions