(cosx+cosy)^2 + ( sinx-siny)^2=?
Answers
Answered by
4
Step-by-step explanation:
plzzz give me brainliest ans and plzzzz follow me
Attachments:
Answered by
0
Answer:
Step-by-step explanation:
Applying our trigonometric knowledge,we know that,
2sinAsinB=cos(A-B)-cos (A+B)…(1)
And,
2cosAcosB=cos(A+B)+cos (A-B)…(2)
Using (1) & (2),we obtain,
(cosx+cosy) ^2+ (sinx+siny) ^2=cosx^2+sinx^2+2cosxcosy+siny^2+cosy^2+2cosxcosy
=1+1+2cosxcosy+2sinxsiny[Since,sinA^2+cosA^2=1]
=2+cos(x+y)+cos(x-y)+cos(x-y)-cos(x+y)
=2+2cos(x-y)
=2+2[{2cos (x-y)^2–1}][N.B-cos2A=2(cosA^2)–1]
=2–2+{4cos(x-y/2)^2}
={4cos(x-y/2)^2}【proved】.
Similar questions