Math, asked by Chutti, 1 year ago

(cosx-cosy)^2 + (Sinx-siny)^2 = 4 sin^2(x-y)/2

Answers

Answered by swethassynergy
0

Correct Question

To prove that.

(cosx-cosy)^{2} +(sinx-siny) ^{2} =4 sin^{2}(\frac{(x-y)}{2} )

Answer:

It is proved that (cosx-cosy)^{2} +(sinx-siny) ^{2} =4 sin^{2}(\frac{(x-y)}{2} ).

Step-by-step explanation:

Given:

(cosx-cosy)^{2} +(sinx-siny) ^{2} =4 sin^{2}(\frac{(x-y)}{2} )

To Find:

It is to be proved that (cosx-cosy)^{2} +(sinx-siny) ^{2} =4 sin^{2}(\frac{(x-y)}{2} ).

Formula Used:

cosx-cosy== -2sin(\frac{x+y}{2})sin(\frac{x-y}{2} )       ----formula no.01

sinx-siny=2cos(\frac{x+y}{2})sin(\frac{x-y}{2})          ----- formula no.02.

sin^{2}(\frac{x+y}{2} ) +cos^{2}(\frac{x+y}{2} ) =1                 -------- formula no.03.

Solution:

As given - (cosx-cosy)^{2} +(sinx-siny) ^{2} =4 sin^{2}(\frac{(x-y)}{2} ).

LHS=(cosx-cosy)^{2} +(sinx-siny) ^{2}

          Applying formula no.01 and  formula no.02.

          =( -2sin(\frac{x+y}{2})sin(\frac{x-y}{2} ))^{2} +(2cos(\frac{x+y}{2})sin(\frac{x-y}{2})) ^{2}

          =(-2)^{2} sin^{2} (\frac{x+y}{2}) sin^{2} (\frac{x-y}{2} ) +(2)^{2} cos^{2} (\frac{x+y}{2}) sin^{2} (\frac{x-y}{2})

          =4 sin^{2} (\frac{x+y}{2}) sin^{2} (\frac{x-y}{2} ) +4 cos^{2} (\frac{x+y}{2}) sin^{2} (\frac{x-y}{2})

         =4 sin^{2} (\frac{x-y}{2}) (sin^{2} (\frac{x+y}{2} ) +cos^{2} (\frac{x+y}{2}))

         Applying formula no.03.

         =4 sin^{2} (\frac{x-y}{2}) (1)

        =4 sin^{2} (\frac{x-y}{2})

        =RHS

LHS=RHS

Hence it is proved that (cosx-cosy)^{2} +(sinx-siny) ^{2} =4 sin^{2}(\frac{(x-y)}{2} ).

PROJECT CODE#SPJ2

Answered by rakeshsingh52
0

Given,

(cosx-cosy)^{2} +(sinx-siny)^{2} =4sin^{2}(\frac{x-y}{2} )

We have to prove the given expression,

Formulas used:

cosx-cosy=-2sin(\frac{x+y}{2})sin(\frac{x-y}{2})

sinx-siny=2cos(\frac{x+y}{2})sin(\frac{x-y}{2})

sin^{2}(\frac{x+y}{2})+cos^{2}(\frac{x+y}{2})=1

Now,

(cosx-cosy)^{2} +(sinx-siny)^{2} =4sin^{2}(\frac{x-y}{2} )

L.H.S =(cosx-cosy)^{2} +(sinx-siny)^{2}

From, cosx-cosy=-2sin(\frac{x+y}{2})sin(\frac{x-y}{2}) and sinx-siny=2cos(\frac{x+y}{2})sin(\frac{x-y}{2})

=(-2sin(\frac{x+y}{2} )sin(\frac{x-y}{2}))^{2}+(2cos(\frac{x+y}{2})sin(\frac{x-y}{2}))^{2}

=4(sin^{2}(\frac{x+y}{2})sin^{2}(\frac{x-y}{2}))+4(cos^{2}(\frac{x+y}{2})sin^{2}(\frac{x-y}{2}))

=4sin^{2}(\frac{x-y}{2})(sin^{2}(\frac{x+y}{2})+cos^{2}(\frac{x+y}{2}))

=4sin^{2}(\frac{x-y}{2})

L.H.S=R.H.S

Therefore, (cosx-cosy)^{2} +(sinx-siny)^{2} =4sin^{2}(\frac{x-y}{2} ).

Hence, it is proved.

Similar questions