Math, asked by Krishshah1112, 9 months ago

(cosx)^y = (siny)^x find dy/dx​

Answers

Answered by FIREBIRD
9

Step-by-step explanation:

We Have :-

 \cos(x)^{y}  =  \sin(y)^{x}

To Find :-

 \dfrac{dy}{dx}

Method Used :-

taking \: log \: both \: sides

Solution:-

\cos(x)^{y}  =  \sin(y)^{x}  \\  \\  \\ taking \: log \\  \\  \\  log( \cos(x)^{y} )  =  log( \sin(y)^{x} )  \\  \\  \\ y log( \cos(x) )  = x log( \sin(y) )  \\  \\  \\ using \: multiplication \: rule \: of \: differentiation \\  \\  \\  - y  \dfrac{ \sin(x) }{ \cos(x) }  +  log( \cos(x) )  \dfrac{dy}{dx}  =  log( \sin(y) )  + y \dfrac{ \cos(y) }{ \sin(y) }  \dfrac{dy}{dx}  \\  \\  \\  y \tan(x) +  log( \sin(y) )  =  \dfrac{dy}{dx} (y \cot(y)  -  log( \cos(x) ) ) \\  \\  \\  \dfrac{dy}{dx}  =  \dfrac{y \tan(x) +  log( \sin(y) )  }{y \cot(y)  -  log( \cos(x) ) }

Similar questions