Math, asked by benjamin6986, 10 months ago

Cosy-xsiny(dy/dx)=sec^2 x​

Answers

Answered by MaheswariS
9

\underline{\textbf{Given:}}

\textsf{Differential equation is}

\mathsf{cosy-x\,siny\,\dfrac{dy}{dx}=sec^2x}

\underline{\textbf{To find:}}

\textsf{Solution of the given differential eqation}

\underline{\textbf{Solution:}}

\mathsf{Considerr,}

\mathsf{cosy-x\,siny\,\dfrac{dy}{dx}=sec^2x}

\textsf{Take,}

\textsf{\boldmath$t=x\,cosy$}

\textsf{\boldmath$\dfrac{dt}{dx}=x(-siny)\dfrac{dy}{dx}+cosy$}

\textsf{\boldmath$\dfrac{dt}{dx}=-x\,siny\,\dfrac{dy}{dx}+cosy$}

\textsf{The given equation can be written as}

\mathsf{\dfrac{dt}{dx}=sec^2x}

\mathsf{dt=sec^2x\;dx}

\mathsf{Integrating,}

\mathsf{\displaystyle\int\,dt=\int\,sec^2x\;dx}

\mathsf{t=tanx+C}

\implies\boxed{\mathsf{x\,cosy=tanx+C}}

\textsf{which is the required solution}

\underline{\textbf{Find more:}}

Solve x(x-y)dy+y^2dx=0​

https://brainly.in/question/13164355

Answered by pulakmath007
7

SOLUTION

TO EVALUATE

 \displaystyle \sf{ \cos y - x \sin y \frac{dy}{dx}  =  { \sec}^{2}x }

EVALUATION

Here the given differential equation is

 \displaystyle \sf{ \cos y - x \sin y \frac{dy}{dx}  =  { \sec}^{2}x }

We solve it as below

 \displaystyle \sf{ \cos y - x \sin y \frac{dy}{dx}  =  { \sec}^{2}x }

 \displaystyle \sf{ \implies \:  \cos y \: dx - x \sin y  \: dy  =  { \sec}^{2}x  \: dx}

 \displaystyle \sf{ \implies \:  d(x\cos y \: )  =  { \sec}^{2}x  \: dx}

On integration we get

 \displaystyle \sf{  \int  d(x\cos y \: )   =  \int { \sec}^{2}x  \: dx}

 \displaystyle \sf{ \implies x\cos y \:   =  \tan x \:  + c}

Where C is integration constant

FINAL ANSWER

Hence the required solution is

 \boxed{ \:  \:  \displaystyle \sf{  x\cos y \:   =  \tan x \:  + c} \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

(A) x only

(B) y only

(C) constant

(D) all of these

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

(A) variable seprable

(B) homogeneous

(C) exact

(D) none ...

https://brainly.in/question/38173619

Similar questions