cot^-1[2tan(cos^-1(8/17))]+tan^-1[2tan(sin^-1(8/17))]=tan^-1(300/161)
Answers
Given: cot^-1[2tan(cos^-1(8/17))]+tan^-1[2tan(sin^-1(8/17))]=tan^-1(300/161)
To find: Prove the above trigonometric terms.
Solution:
- Now lets consider the LHS side:
cot^-1[2tan(cos^-1(8/17))]+tan^-1[2tan(sin^-1(8/17))]
- So, now assume
A = cos^-1(8/17)
cos A = 8/17
B = sin^-1(8/17)
sin B = 8/17
- Now, cos A = 8/17 => sin A = √1 - cos²A
sin A = √1 - 64/289
= √225/289
= 15/17
- Similarly, sin B = 8/17 => cos B = √1 - sin²B
cos B = √1 - 64/289
= √225/289
= 15/17
- So, tan A = 15/17/8/17 = 15/8 and tan B = 8/17/15/17 = 8/15
- So now, put these in the LHS we get:
cot^-1[2tan(tan^-1 (15/8))] + tan^-1[2tan(tan^-1 (8/15))]
cot^-1 [ 2 x 15/8 ] + tan^-1 [ 2 x 8/15 ]
cot^-1(30/8) + tan^-1(16/15)
tan^-1(4/15) + tan^-1(16/15)
tan^-1((4/15 + 16/15) /( 1 - 4/15 x 16/15))
tan^-1 ( 300/161) ...........................RHS
Answer:
cot^-1[2tan(cos^-1(8/17))]+tan^-1[2tan(sin^-1(8/17))]=tan^-1(300/161)
Hence proved